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Abstract--The present analysis deals with the velocity and temperature distribution in steady state, hydro- 
dynamically and thermally fully developed, laminar forced flow for Newtonian fluids in rectangular ducts. 
The analytical solutions are presented for all the eight modified H2 thermal boundary conditions around 
the periphery of the duct cross-section. The velocity profile represents the rigorous solution to the Navier- 
Stokes equation ; the temperature profile is obtained resorting to series solutions of trigonometric functions. 
The temperatures and the Nusselt numbers are predicted as functions of the aspect ratio and compared 
with the results available in literature. Finally, very simple polynomial representations are given for the 

Nusselt numbers. 

INTRODUCTION 

The analysis of the hydrodynamics and thermal 
behavior of laminar flow through rectangular ducts is 
of special interest in a wide variety of heating and 
cooling devices u,;ed in compact or spiral heat 
exchangers, chemical reactors, meandering rivers, 
electronic cooling. Extensive numerical and exper- 
imental studies have been carried out by many 
authors, however the analytical investigation is gen- 
erally disregarded. In fact the theoretical inves- 
tigation, concerning; the fluid temperature profile and 
the Nusselt number prediction, is very complicated 
because it requires a two- or three-dimensional (3D) 
analysis. Thermal boundary conditions in rectangular 
ducts are also complex, because there are many possi- 
bilities to impose different temperatures or heat fluxes 
on the four sides. 

In order to accurately interpret the heat transfer 
problem, a clear understanding of the thermal boun- 
dary conditions is e:~sential. 

Recent reviews [1-3] have proposed a systematic 
exposition, restricted mainly to three classes of con- 
ditions : (1) T condition, i.e. constant temperature on 
the boundaries; (2) H1 conditions, i.e. constant wall 
temperature and constant fluid axial heat flux and (3) 
H2 condition, i.e. constant wall heat flux and constant 
fluid axial heat flux. 

If the four sides of the rectangle have different tem- 
peratures or heat flu xes, the usual nomenclature must 
be modified. In a recent paper Gao and Hartnett [4] 
have focused the la,zk of analytical solutions for the 
H2 condition, and ]presented an analytical study for 
laminar slug flow in rectangular ducts, for eight ver- 
sions involving different combinations of heated and 
adiabatic walls, symbolically specified as follows: 

4 : four heated sides ; 

3L: three heated sides and one adiabatic short side ; 
3S : three heated sides and one adiabatic long side ; 
2L : two heated long sides and two adiabatic short 

sides ; 
2S : two heated short sides and two adiabatic long 

sides ; 
2C: one short and one long heated sides (corner 

version) ; 
1L : one heated long side and 
1S : one heated short side. 

The solutions for slug flow in [4] cannot be applied 
to Newtonian flows, where the spatial effects of the 
velocity distribution are very effective, mainly near 
the corners and along the narrow walls. Hence it is 
essential to consider the actual velocity profile in the 
fluid as a function of two Cartesian coordinates (in 
fully developed flow). Aim of this paper is the rigorous 
determination of the temperature profile of a New- 
tonian fluid, in laminar, hydrodynamically developed 
flow, through rectangular ducts, with constant differ- 
ent heat fluxes on the four sides of the wetted 
perimeter. Then the Nusselt number can be easily 
predicted by integrating simple temperature differ- 
ences along the wetted perimeter of the rectangular 
cross-section. 

STATEMENT AND SOLUTION 

Consider a Newtonian fluid, in incompressible lami- 
nar hydrodynamically fully developed flow, in forced 
convection, in a rectangular duct with axially un- 
changing cross-section. 

In order to solve the energy equation let us assume 
that a constant heat flux q is exchanged between the 
fluid and the wall, along a rectangular perimeter of 
arbitrary heated length L ; an energy balance between 

1165 



1166 M. SPIGA and G. L. MORINI 

N O M E N C L A T U R E  

A parameter defined in equation (3) 
a, b longer and shorter sides, respectively, 

of the rectangle Ira] 
Bran coefficients defined in equations (9) 
c* function of the combination of heated 

and adiabatic walls 
dl, d2, d3, d4 constants defined in Table 1 
D hydraulic diameter of the duct 

2ab/a + b [m] 
gi ith polynomial coefficient in Nusselt 

number representation 
h heat transfer coefficient [W m -~ K -1] 
j ,  k, m, n summation indices 
K fluid thermal conductivity [Wm 1 K-~] 
L heated perimeter length on the 

rectangular cross section [m] 
Nu Nusselt number for laminar flow, 

hD/K 
Nu* Nusselt number for slug flow 
q heat flux through the duct walls 

[w m -~] 
tm~x dimensionless maximum wall 

temperature defined in equation 
(13) 

tm~n dimensionless minimum wall 
temperature defined in equation 
(14) 

r(.) 
~(.) 

W 
x, y, z 

fluid temperature [K] 
axial velocity for fully developed 
laminar flow [m s -1] 
fluid average velocity [m s-~] 

dimensionless rectangular Cartesian 
coordinates. 

Greek symbols 
fluid thermal diffusivity [m 2 s i] 

fl aspect ratio b/a <<. 1 
e relative error between the polynomial 

representation and the exact solution 
0(.) dimensionless fluid temperature 
0c dimensionless fluid temperature at the 

duct center 
0bu~k dimensionless bulk temperature 
0w dimensionless mean wall temperature 
0 . . . . .  dimensionless maximum wall 

temperature 
0w.mm dimensionless minimum wall 

temperature 
z(.) dimensionless fluid temperature 

0(9 - Boo 
4, ~/, ( Cartesian coordinates [m]. 

the sections ~ and (+dff  gives the axial variation of 
the fluid temperature : 

80 aL(1 + fl) 
- - -  (1) 

Oz 2 Wb 2 

where the dimensionless temperature and the axial 
coordinate are 0 = KT/qD and z = ~/a, respectively. 
Hence the fluid temperature presents a linear variation 
along the axial duct coordinate. 

The origin of the Cartesian coordinate system is 
placed at the bottom left corner of the rectangle, and 
the fluid flow is directed toward the ( axis ; the ¢ axis 
and the longer side of the rectangle are parallel. Under 
assumption of constant fluid properties, neglecting 
axial thermal conduction, natural convection, viscous 
dissipation, internal energy sources, with rigid and 
non porous duct walls, the differential steady state 
energy equation may be written as : 

020 020 av(x,y) O0 
Ox 2 + (2) Oy 2 c~ 8z" 

The non-dimensional coordinates and temperature 
arex = ~/a (with0 ~< x ~ 1),y = q/a (with0 ~< y ~ fl, 
being fl = b/a <~ 1). 

The velocity distribution appearing in the equation 
(2) has been recently obtained as an analytical solu- 
tion to the Navier-Stokes equation [5], resorting to a 

double Fourier sine transform. In hydrodynamically 
developed flow there is only one nonzero component 
v ; it reads as : 

W 

"=  , k =  l , o d d  

sin (kxx) sin (jrc ~) 

j k@k 2 +f )  
(3) 

where the number A depends on the aspect ratio : 

4 oc 
Z 1 

7~ j= 1,odd k= l,odd j2k2(f12k2 +j2)" 
(4) 

The fast convergence of the double series is guaranteed 
by the third and fourth power of the integer indices j 
and k in the denominator of equations (3) and (4). 
The number A can be approximated, with an agree- 
ment less than 0.1% with respect to the exact value of 
equation (4), by the third-order polynomial : 
0.5059-0.3022 f l-0.0642 fl2+0.0747/33. 

The availability of a simple and symmetric solution 
for the velocity profile allows us to tackle the thermal 
problem by means of a rigorous analytical approach. 

By substituting in the energy equation (2) the vel- 
ocity profile stated in the equation (3) and the tem- 
perature partial derivative of equation (1), the fol- 
lowing expression is obtained : 
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sin (krcx) sin (jn ~) 
~20 020 £, 0o 

= , k = l , o ~  k j ( f l ~ k  ~ + f )  

(5) 

where the number  c*, depending on the not  yet speci- 
fied heated length L, is obtained according to the 
energy balance and reads as : 

c* = L(1 +fl)  (6) 
2aft 2 

The solution to title equation (5) is subject to the 
boundary  conditiens, that, according to the H2 
approach, are : 

(~)X=0 = dl ( ~  -~ ) (~)X= 1 = d2 ( ~ )  

d 3 ~ -  ) (~y)y==d4(~). (7) 

The constants dl, d2, d3, d4 and  c* depend on the 
specified combinat ion of  heated and adiabatic walls, 
imposed by the boundary  conditions. The modified 
H2 thermal boundary  conditions involve the heating 
of one or more of the four walls, with adiabatic 
remaining walls. With reference to the eight versions 
of these boundary  conditions, the constants dl, d2, d3, 
d4 and c* are shown in Table 1. 

The H2 conditiorL implies that the fluid temperature 
undergoes a linear variation along the duct length, 
hence the two-dirnensional (2D) temperature dis- 
tr ibution in the crcss-section is simply shifted along 
the z axis. 

Taking the velocity profile as a starting point for 
determining the solution to the equation (1), the 

Table 1. Boundary condition for the eight versions of H2 
boundary conditions 

Version dl d2 d~ d4 c* 

(1 +fl) 
1L 0 0 0 1 

2fl 2 
(l+fl) 

1S 0 1 0 0 
2fl 

(l+fl) 
2L 0 0 - 1 1 

(l+fl) 
2S - 1 1 0 0 

(1 + fl) ~ 
2C 0 1 0 1 

2fl 2 

3L 0 1 -- 1 1 (1 +fl)(2+fl) 
2fl 2 

(1 +fl)(2fl+ 1) 
3S - -1  1 0 1 

2fl 2 
(1 + fl)2 

4 --1 1 - -1  1 

unknown temperature distribution is sought by resort- 
ing to a double series in terms of complete systems of 
orthogonal functions : 

O(x'Y)~ n=0 ~ m=0 ~ BmnCOS(n~X) COS(mT"c~). (8) 

Then the problem is reduced to the determination of 
the constants B,.,. In order to obtain the solution, the 
first step consists of multiplying every term of equa- 
tion (5) by cos (mzx)cos (mrty/fl) and by integrating 
over x, between 0 and 1, and over y, between 0 and ft. 
The numerous integrals appearing in this procedure 
can be easily and patiently solved by classical 
methods. Many integrals disappear thanks to the 
orthogonality of the systems in equation (8); the 
boundary  conditions directly appear when solving by 
parts the integrals involving the derivatives of tem- 
perature. 

After some algebra, it is possible to obtain the 
unknown coefficients : 
f o rm ¢ 0  a n d n  # 0: 

16c* ~ (m;) ATg 4 + n2 k= 1,odd j= 1,odd 

Bin,= 1 X 
(f12 k2 + j2) ( k2 - n2) (j 2 -- m 2) 

if n and m even 

0 else 

fo rm = O a n d n  # O: 

2 [.d . . / l + f l ' ~  4c* 
i [  2 -- al ) / ~ - J  -- ~ 2.. 

n 7"c L ~ ~P / A~ k=l,odd 

Bon = j=l,oddj (fl k + j  )(k - n  ) [  

(dl +d2)(1 +fl)  i fn  odd 
n2 7~2 fl 

fo rm # 0 a n d n  = 0 :  

2fl y, d d , f l+f l '~  4tic* 
L 4 -  j d 

1 
× 

Bmo= += ],odd k 2 (f12k2 

(d3 +d4)(1 +fl)  i fm odd. 
m2~ 2 

(9a) 

if n even 

(9b) 

if m even 

The coefficient Boo can not  be determined, because 

(9c) 
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equation (2), worked out by the same procedure, with 
m = n = 0, provides the equality : 

B00 [ ( d z - d , ) f l +  (d4-d3)]( l~f l f l )=f lc*Boo • 

(10) 

In fact, for any version out of the eight versions quoted 
in Table 1, equation (10) is identically satisfied. The 
indetermination of Boo implies that the temperature 
distribution is calculated apart from an additive con- 
stant; this is physically consistent with the H2 
conditions, because no temperature value is given 
either on the boundary or in the cross section. The 
Nusselt numbers depend only on temperature dis- 
tribution, hence can be accurately and easily obtained. 
As usual [4], the Nusselt number related to the whole 
cross-section is : 

1 
Nu - - -  (1 l) 

0 w - -  0bulk 

where the dimensionless mean wall temperature is 
related to the heated walls only : 

Ow = 

-d~ f~i O(O,y)dy+dz f~ O(1,y) dy 

-d3 fi  O(x,O)dx+d4 f i  O(x, fl)dx 

fl(d~ - d , )  + (a4 -d~) 

(12) 

while the classical fluid bulk temperature is the double 
integral, over the rectangle, of the temperature O(x, y), 
weighted on the velocity distribution indicated in 
equation (3). Specifying the constants d~, d2, d3, d4, 
the temperature profiles given in equation (8) and the 
Nusselt numbers are rigorously predicted for all the 
eight modified H2 boundary conditions. The thermal 
stresses occurring on the walls depend on the dimen- 
sionless maximum and minimum wall temperatures, 
defined by Shah in [6] for the H2 condition related to 
four heated walls : 

0 . . . . .  - 0~ 
/ m a x - -  0 w _ _ 0  c ( 1 3 )  

0w,m~ - -  0~ 
tmi n - -  0 w _ _ 0  c (14) 

where 0~ is the fluid temperature at the duct center. 
The temperatures tm~x and tmm will be useful for com- 
parison with some numerical results quoted in [6]. 

RESULTS AND DISCUSSION 
The previous results have been worked out on a 

modern PC equipped with 80486 processor. The avail- 
ability of analytical expressions and the fast con- 
vergence of the double series in equation (8) make the 
present technique quite effective and inexpensive in 

J 
~ . ~ _ ~ k _ ~ . / / " / / ~  Y 

1 0 

0.6  

0 . 4  

0 , 2  

0 

-0.2' 

-0.4 

x ~ ~  y 

1 

0.5 

1,5-i 
1- I~---o.1 

o~ 

"0'5 t • 
-1 ---~ ..................... 

-----.i~i 0.1 

1 o y  

Fig. 1. Dimensionless temperature distribution, four heated 
walls. 

terms of computer time. The 2D temperature dis- 
tribution in the rectangle is reported, in Figs. 1-8, 
for different values of  the aspect ratio, for all the 
eight combinations of  heated and adiabatic walls. 
As previously pointed out, 0 is defined apart 
from the constant Boo, hence the temperature 
z(x,y) = O(x, y) -- Boo is considered in the plots. The 
interpretation of the various temperature distri- 
butions, obtained by equation (8), is consistent with 
the physical perception. 

In Fig. 1 the dimensionless fluid temperature dis- 
tribution is sketched for the four heated walls (version 
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Fig. 2. Dimensionless temperature distribution, 3L version. 

4), with fl = 0.1, 0.5 and 1. The negative values of 
temperature are due to definition of z; owing to the 
indetermination of Boo, the two-dimensional tem- 
perature profile can be shifted arbitrarily as one likes. 

From Fig. l, it comes out that the minimum and 
maximum fluid temperatures occur at the center and 
on the corners, respectively, of the rectangular cross 
section. For decreasing values of the aspect ratio, 
the minimum wall temperature (in the middle point 
of the long sides) approaches the minimum fluid 
temperature. 

In Fig. 2, for the 3L version, the minimum fluid 
temperature lies on the straight line y = f l / 2 ,  in prox- 

1'5" i 
1" 

0.5- 
1; 

O 

-,0.5 

-1 d 
0 

0.1 
10y  

Fig. 3. Dimensionless temperature distribution, 3S version. 

imity to the adiabatic wall. It is interesting to point 
out that the minimum fluid temperature is reached in 
x = 0.292 for any value of the aspect ratio (in the 
range 0. l - l ) ,  and that the fluid temperature has nearly 
the same value for any fl, in the point x = 0.6333, 
y --  f l /2 .  The maximum values of fluid temperature 
are situated in the corners of the short heated wall. 
The solution to the 3S version is shown in Fig. 3, for 
fl = 0.1 and 0.5; obviously for fl = 1 (square duct) 
there is no difference between the versions 3L and 3S ; 
the same holds for the versions 2L-2S and 1L-1S. 
The results put in evidence that the fluid temperature 
decreases starting from the long heated side, then 
reaches its minimum value, on x = 1/2, in proximity 
to the long adiabatic wall, remaining nearly constant 
up to this wall. This minimum position gets near the 
adiabatic wall for decreasing values of ft. 

Figure 4 refers to the 2L version; the wall tem- 
perature on the long sides becomes flatter for increas- 
ing aspect ratios, while the temperature variation 
along the short sides is very considerable; the mini- 
mum and maximum fluid temperatures occur in the 
center and on the corners, respectively, of the 
rectangle. The minimum wall temperature occurs in 
the middle point of the long heated sides for 
fl < 0.3687, of the short adiabatic sides for 
fl > 0.3687. 

The version 2S is dealt with in Fig. 5; minimum 
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Fig. 4. Dimensionless temperature distribution, 2L version. 

and maximum values of fluid temperature are situated 
at the center and on the corners, respectively. The wall 
temperature variation is negligible on the short heated 
sides, but very significant on the long adiabatic sides. 
The corner version (2C) is sketched in Fig. 6; the 
minimum and maximum wall temperatures are 
reached at the two corners between the adiabatic sides 
and the heated sides, respectively. The minimum fluid 
temperature occurs on the long adiabatic wall of the 
rectangle, in proximity to the adiabatic corner. 

In Figs. 7 and 8 the 1L and 1S versions are pre- 
sented ; the fluid temperature is maximum on the tips 
of the heated side, minimum in the middle point of 
the opposite adiabatic side. For the 1S version, the 

1" 

0.8" 
0.6 ~ 
0.4- 

xO.2-  

0- 

-0.2- 

-0.4" 

-0.6" 

- ~ l ~ y  0'1 

Fig. 5. Dimensionless temperature distribution, 2S version. 

wall temperature along the heated side is almost 
constant. 

The temperature distributions are useful to deter- 
mine Nu by means of equation (11) ; the Nusselt num- 
bers are of paramount importance, because they are 
the fundamental tools for engineering applications 
and because they can be compared with the numerical 
results obtained by several authors for the four heated 
walls. Only this version has been extensively inves- 
tigated in literature ; Cheng [7] arrived at closed-form 
expressions for temperature and Nu, in the form of 
infinite series using separation of variables. Sparrow 
and Siegel [8] approached the same problem by a 
variational method and pointed out an error in [7] for 
the square duct, confirmed by Cheng [9], Shah [6] and 
Iqbal [10], while numerical lack of accuracy is found 
in [11] and [12]. 

For the version 4, the Nusselt numbers of the pre- 
sent paper are compared with the results of other 
authors. Table 2, where three-digit values are given, 
shows that Nu is nearly constant, decreasing 6% for 
/~ ranging from 1 to 0.1. For the square duct, the 
present value Nu = 3.091 is in perfect agreement with 
the results given in [6], [8], [9] and [10], while Chan- 
drupatla et al. [11] and Lyczkowski et al. [12] pro- 
posed Nu = 3.095 and Nu = 3.23, respectively. To 
stress the fundamental role played by the velocity 
distribution on the thermal behavior, it is pointed 
out that, for slug flow, Gao and Hartnett [4] found 
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Fig. 6. Dimensionless; temperature distribution, 2C version. 

Nu* = 6 for any/3 (Nu* is nearly twice Nu). In order 
to verify the accuracy of the present solution, the 
temperatures defined in equations (13) and (14) have 
been quoted in Table 2, and compared with the anal- 
ogous results of  Table 6 in [6], where two-digit values 
are indicated. The agreement is very satisfactory. It 
should be pointed out that the Nusselt numbers pre- 
sented in [2] for/3 = 0.125 and/3 = 0.1 (2.94 and 2.95, 
respectively), are ]~robably printer 's errors, as sug- 
gested by the value Nu = 2.904 for/3 = 0.125 reported 
in the preceding paper [13]. For /3  = 0, Nu can not  
reach the value 8.235 (the well known Nusselt number  
for slab geometry). As discussed in [2] and [8] this is 
justified by the fact that it is not  possible to approach 

0 . 3  

0 .2  

0.1" 
"C 

O 

-0 ,1  

-0 ,2  

1 0 

0 . 5  ¸ 

0.4  
0 .3  
0.2' 

,~ 0.~. 

0- 

-0.1 - 

-0.2- 

-0.3- 

0.1 

lo y 
Fig. 7. Dimensionless temperature distribution, 1L version. 

the slab geometry as a limiting case of four heated 
walls. It is a more rational idea to approach the slab 
geometry as a limiting case of the 2L version; the 
mathematical demonstration that equation (8), for 
the 2L version with /3 ~ 0, coincides with the slab 
temperature profile will be object of future work. In 
Table 3, the Nusselt numbers,  for all the remaining 
H2 versions, are presented, for different values of the 
aspect ratio. In literature there are no results about  
this matter (only in [4], but  for slug flow, and in [14] 
the 2L and 2S versions are studied, with sinusoidal or 
parabolic heat flux distributions on the opposite 
heated walls), hence it is not  possible to propose a 
comparison with other data. The highest values for 
Nu are observed for the 2L version. For the versions 
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Fig. 8. Dimensionless temperature distribution, 1S version. 

3S, 2S and  1S the Nussel t  numbers  increase with fl, 
and  the opposite happens  for the versions 3L, 2L and  
1L. In the case 2C (corner version) the Nussel t  n u m b e r  
is nearly cons tan t  (about  2.4, ra ther  similar to 
Nu* = 3, for any  fl, in [4]), increasing 2.5% for fl 
ranging f rom 0.1 to 1. 

For  the sake of  completeness,  the m i n i m u m  and 
m a x i m u m  tempera tures  defined in equa t ion  (13) and  
(14) are reported in Tables 4 and  5. 

Finally, a 5th order  polynomial  approx imat ion  is 

given, a imed at offering a very simple but  accurate  
tool for technicians and  designers involved in heat  
t ransfer  appl icat ions : 

5 

Nu = ~ ffi~ i. (15) 
i--O 

The coefficients gl are given in Table  6 for all the eight 
versions of  H2 condi t ions  considered;  the relative 
difference ~ is positive when  the equa t ion  (15) gives 
Nussel t  numbers  greater  than  the r igorous cal- 
culat ions of  equa t ion  (l  1), it is negative otherwise. 
This tool is very significant, because the agreement  
between Nu f rom the approximate  equa t ion  (15) and  
the exact equa t ion  (l l)  is always within - 0 . 0 6 3 %  
and  + 0 . 0 2 5 % .  

CONCLUDING REMARKS 

This paper  has reported a study on  Nussel t  n u m b e r  
predict ions for l aminar  flow in rec tangular  ducts,  for 
the eight versions of  the H2 bounda ry  condit ions.  The 
mathemat ica l  procedure,  based on  the double  Four ier  
t ransform,  is no t  valid for the slab geometry fl = 0. 
The tempera ture  dis t r ibut ions are obta ined,  apar t  
f rom an  addit ive constant ,  as a double  series of  
cosinusoidal  funct ions,  with  coefficients depending on  
the different combina t ions  of  hea ted  and  adiabat ic  
walls. By integrat ing tempera ture  differences only, the 
Nussel t  numbers  are accurately predicted and  com- 
pared with the results obta ined  numerical ly  by several 
authors ,  mainly  for the four heated walls. A t  last the 
Nussel t  numbers  for all the eight  versions of  the H2 
bounda ry  condi t ions  are presented in terms of  5th 
order  polynomials  (with the absolute  value of  the 
relative error  e less t han  0.063%),  offering an  exhaus- 
tive solut ion to the var ious versions of  the H2 
problem. 

Acknowledgements This work was financially supported by 
grants from the Italian C.N.R. (Consiglio Nazionale delle 
Ricerche) and M.U.R.S.T. (Ministero dell'Universit~t e della 
Ricerca Scientifica e Tecnologica). 

Table 2. Nusselt number, maximum and minimum wall temperature ; four heated 
walls 

fl Nu Nu NU tma x tma  x tmi n tmi n 

[21-[6] [8] [6] [6] 

1 3.091 3.091 3.09 1.399 1.39 0.769 0.769 
5/6 3.085 - -  - -  1.407 0.691 - -  
0.75 3.077 3.07 - -  1.418 1.41 0.648 0.649 
2/3 3.064 - -  1.436 - -  0.602 - -  
0.5 3.022 3.02 - -  1.503 1.5 0.499 0.499 
1/3 2.964 2.97 - -  1.644 0.379 - -  
0.25 2.935 2.94 - -  1.770 1.76 0.311 0.311 
0.2 2.922 2.93 - -  1.878 - -  0.266 - -  
0.125 2.909 - -  - -  2.115 2.11 0.192 0.192 
0.1 2.907 - -  2.90 2.226 - -  0.163 - -  
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Nu 
fl 3L 3S 2L 2S 2C 1L 1S 

1 2.943 2.943 4.083 4.083 2.430 2.686 2.686 
5/6 3.009 2.869 4.376 3.780 2.428 2.913 2.457 
0.75 3.042 2.824 4.532 3.603 2.425 3.041 2.324 
2/3 3.076 2.773 4.700 3.404 2.421 3.179 2.178 
0.5 3.140 2.648 5.058 2.932 2.408 3.494 1.834 
1/3 3.204 2.494 5.445 2.321 2.389 3.870 1.399 
0.25 3.241 2.408 5.654 1.934 2.380 4.089 1.132 
0.2 3.268 2.354 5.790 1.662 2.376 4.233 0.952 
0.125 3.319 2.270 6.014 1.172 2.371 4.471 0.645 
0.1 3.339 2.240 6.096 0.981 2.371 4.558 0.531 

Table 4. Maximum temperature tmax, for different aspect ratios, in H2 conditions 

/max 
fl 3L 3S 2L 2S 2C 1L 1S 

1 1.636 1.636 1.058 1.058 1.696 1.023 1.023 
5/6 1.709 1.581 1.085 1.038 1.707 1.035 1.015 
0.75 1.761 1.558 1.105 1.030 1.723 1.044 1.012 
2/3 1.826 1.540 1.132 1.023 1.751 1.056 1.009 
0.5 2.019 1.524 1.218 1.012 1.856 1.097 1.005 
1/3 2.366 1.567 1.383 1.005 2.100 1.185 1.002 
0.25 2.658 1.636 1.525 1.003 2.341 1.270 1.001 
0.2 2.904 1.708 1.647 1.002 2.564 1.349 1.001 
0.125 3.453 1.901 1.917 1.001 3.128 1.552 1.000 
0.1 3.713 2.004 2.046 1.001 3.428 1.662 1.000 

"Fable 5. Minimum temperature /min, for different aspect ratios, in H2 conditions 

lmin 
fl 3L 3S 2L 2S 2C 1L 1S 

1 -0.0323 -0.0323 0.2143 0.2143 -0.2756 --0.2108 -0.2108 
5/6 -0.0196 -0.0428 0.2796 0.1611 -0.2760 --0.2035 -0.2188 
0.75 -0.0116 -0.0478 0.3231 0.1354 -0.2769 -0.1997 -0.2237 
2/3 -0.0007 -0.0527 0.3771 0.1106 -0.2792 -0.1958 -0.2293 
0.5 0.0295 -0.0612 0.5318 0.0653 -0.2905 -0.1879 -0.2433 
1/3 0.0789 -0.0654 0.6970 0.0293 -0.3247 -0.1786 -0.2632 
0.25 0.1142 -0.0636 0.6107 0.0163 -0.3644 -0.1712 -0.2765 
0.2 0.0849 -0.0603 0.5464 0.0103 -0.4031 -0.1642 -0.2858 
0.125 -0.0655 -0.0503 0.4212 0.0040 -0.5043 -0.1453 -0.3018 
0.1 -0.1311 -0.0450 0.3671 0.0025 -0.5580 --0.1345 -0.3076 

Table 6. Polynomial coefficients appearing in equation (15) 

Version go gl g: g3 g4 g5 e [%] 

4 2.9235 --0.3737 2.4553 --3.5494 2.0489 --0.4135 -0.023 
3L 3.4487 -- 1.3586 3.0661 --4.5527 3.2042 --0.8646 --0.013 
3S 2.1197 1.2439 -0.3927 0.2615 -0.6206 0.3312 +0.025 
2L 6.4812 -4.4032 6.4748 - 10.3513 8.6349 --2.7534 -0.015 
2S 0.0470 11.0106 - 18.9052 24.3137 --17.5238 5.1407 -0.063 
2C 2.3766 -0.1309 0.8612 - 1.3250 0.8534 -0.2053 +0.018 
1L 4.9460 -4.2699 4.2859 -4.3557 2.9119 -0.8321 -0.010 
1S 0.0094 5.8307 --6.7178 6.3174 - 3.6781 0.9245 -0.047 
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